재무 관리

Valuation of Future Cash Flows

  • Future Value (FV)

    $\mathrm{FV} = \mathrm{PV} (1 + \mathrm{r})^\mathrm{t}$

  • Present Value (PV)

  • return (r)

    $\mathrm{r} = (\frac{\mathrm{FV}}{\mathrm{PV}})^{\frac{1}{t}} - 1$

  • Number of Periods (t)

  • Simple interests

    Interests are earned only on the original principal
    단리
    $\mathrm{FV} = \mathrm{PV} + \mathrm{PV} \times \mathrm{r}^\mathrm{t}$

  • Compound interests

    Interests are earned on the principal and on the interests received
    복리
    $\mathrm{FV} = \mathrm{PV} \times (1 + \mathrm{r})^\mathrm{t}$

  • Annuity

    연금
    1년 뒤 부터 t년까지 C 를 받는 것.

    $\mathrm{PV} = \mathrm{C}\left[\frac{1 - \frac{1}{(1 + \mathrm{r})^t}}{r}\right]$
    $\mathrm{FV} = \mathrm{C}\left[\frac{(1 + \mathrm{r})^t - 1}{r}\right]$

    • Annuity due

      지금 당장부터 t - 1년까지 C 를 받는 것.

      $\mathrm{PV} = \mathrm{C}\left[\frac{1 - \frac{1}{(1 + \mathrm{r})^t}}{r}\right] \times (1 + \mathrm{r})$
      $\mathrm{FV} = \mathrm{C}\left[\frac{(1 + \mathrm{r})^t - 1}{r}\right] \times (1 + \mathrm{r})$

  • Annual Percentage Rate (APR)

    period rate times the number of periods per year
    1년에 몇 번 주기가 도는지 * 해당 주기 마다의 이자율
    period rate = APR / number of periods per year

  • Effective Annual Rate (EAR)

    actual rate considering compounding the interests that occurs during the year.

    $\mathrm{EAR} = \left[1 + \frac{\mathrm{APR}}{\mathrm{m}}\right]^{\mathrm{m}} - 1$
    m = number of compounds per year

    투자 결정자는 EAR을 기반으로 투자를 결정해야 한다. (시험엔 안나온다네?)

Comment

There are currently no comments on this article
Please be the first to add one below :)

Leave a Comment

내용에 대한 의견, 블로그 UI 개선, 잡담까지 모든 종류의 댓글 환영합니다!!