재무 관리
Valuation of Future Cash Flows
-
Future Value (FV)
$\mathrm{FV} = \mathrm{PV} (1 + \mathrm{r})^\mathrm{t}$
-
Present Value (PV)
-
return (r)
$\mathrm{r} = (\frac{\mathrm{FV}}{\mathrm{PV}})^{\frac{1}{t}} - 1$
-
Number of Periods (t)
-
Simple interests
Interests are earned only on the original principal
단리
$\mathrm{FV} = \mathrm{PV} + \mathrm{PV} \times \mathrm{r}^\mathrm{t}$ -
Compound interests
Interests are earned on the principal and on the interests received
복리
$\mathrm{FV} = \mathrm{PV} \times (1 + \mathrm{r})^\mathrm{t}$ -
Annuity
연금
1년 뒤 부터 t년까지 C 를 받는 것.$\mathrm{PV} = \mathrm{C}\left[\frac{1 - \frac{1}{(1 + \mathrm{r})^t}}{r}\right]$
$\mathrm{FV} = \mathrm{C}\left[\frac{(1 + \mathrm{r})^t - 1}{r}\right]$-
Annuity due
지금 당장부터 t - 1년까지 C 를 받는 것.
$\mathrm{PV} = \mathrm{C}\left[\frac{1 - \frac{1}{(1 + \mathrm{r})^t}}{r}\right] \times (1 + \mathrm{r})$
$\mathrm{FV} = \mathrm{C}\left[\frac{(1 + \mathrm{r})^t - 1}{r}\right] \times (1 + \mathrm{r})$
-
-
Annual Percentage Rate (APR)
period rate times the number of periods per year
1년에 몇 번 주기가 도는지 * 해당 주기 마다의 이자율
period rate = APR / number of periods per year -
Effective Annual Rate (EAR)
actual rate considering compounding the interests that occurs during the year.
$\mathrm{EAR} = \left[1 + \frac{\mathrm{APR}}{\mathrm{m}}\right]^{\mathrm{m}} - 1$
m = number of compounds per year투자 결정자는 EAR을 기반으로 투자를 결정해야 한다. (시험엔 안나온다네?)
There are currently no comments on this article
Please be the first to add one below :)
내용에 대한 의견, 블로그 UI 개선, 잡담까지 모든 종류의 댓글 환영합니다!!